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Measurements of heat transfer from fine wires in 
supersonic flows 

By JOHN LAUFER and ROBERT McCLELLAN 
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(Received 24 January 1956) 

SUMMARY 
Results of an experimental investigation of the heat loss of fine 

heated wires immersed in a supersonic stream at right angles to the 
flow direction are presented. The measurements show that the 
heat loss of the wire is independent of the free-stream Mach number 
for values of the latter between 1.3 and 4.5. Since the wire is always 
in the wake of a detached shock wave, the streamlines in the 
neighbourhood of the wire pass through a normal shock wave. 
The Reynolds number Re,, based on conditions behind a normal 
shock, thus becomes the characteristic parameter for the heat 
transfer. The measurements covering a Reynolds number range 
of 3 to 220 show the existence of two flow regimes. For Re, > 20 
the Nusselt number is a linear function of the square root of the 
Reynolds number, and the equilibrium temperature is nearly 
independent of Re,. For Re, < 20 the Nusselt number decreases 
more slowly, and the equilibrium temperature rises sharpIy with 
decreasing Reynolds number. 

INTRODUCTION 
The determination of the drag and heat transfer of a cylinder in a viscous 

compressible flow is a classical problem in fluid mechanics. At present, 
no theoretical solution valid for a wide range of Mach and Reynolds numbers 
exists. Although several accounts of experimental work on the heat 
transfer problem have been published (Kovhsznay 1950 ; Lowell 1950; 
Spangenberg 1955 ; Stalder 1952; Stine 1954; Weske 1943), they disagree 
without exception in the manner of presenting the results; and, in cases 
where sufficient information is available for direct comparison, the results 
aIso disagree in absolute values. I t  was felt advisable, therefore, to carry 
out a series of experiments that might not only resolve the discrepancies 
found in existing measurements, but, more importantly, might throw some 
light on basic questions concerning (a)  the principal parameters involved, 
(b)  whether or not heat transfer from blunt bodies in compressible flows is 
basically different from that in low-speed flows. 

With regard to (a) ,  the point of view of the investigation was influenced 
by some recent experiments on the flow field around blunt bodies at super- 
sonic speeds (Stine 1954; Walter 1953). These experiments have indicated 
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that there is a tendency for the flow field behind the detached shock wave 
in the vicinity of the blunt body to approach a fixed pattern as the free-stream 
Mach number is increased. If the concept of the frozen flow field in the 
neighbourhood of the body is indeed correct, it would greatly simplify 
the heat transfer problem. It would mean that the local quantities 
characteristic of the frozen pattern, rather than the free-stream parameters 
(Mm,  Re,), control the heat transfer. It is therefore suggested that 
the local parameters should be based on conditions behind the detached 
shock wave (Re,, M,). Since, for sufficiently high free-stream Mach 
numbers, M ,  can be considered constant, the Reynolds number Re, can 
thus be expected to be the principal parameter of the problem. It is shown 
in the paper that this is in fact the case. 

With regard to (b) ,  at present little is known about the flow field between 
a blunt body and the shock wave in front of it in flows at high Mach number 
and low Reynolds number. Although the present experiments were not 
designed to investigate this problem, it was possible to obtain some informa- 
tion relevant to it. The measurements provide a lower Reynolds number 
limit (Re, N 20) above which the usual boundary layer approximations 
are expected to be valid. At lower Reynolds numbers the measurements 
indicate that the flow field changes, but no definite statement can be made 
as to the nature of this change, except that here too the parameter Re, 
correlates the results satisfactorily. 

The experiments were carried out under joint sponsorship of the 
Department of the Army, Ordnance Corps (under Contract No. DA-04-495- 
OrdlS), and the Department of the Air Force. The authors wish to 
acknowledge valuable discussions with Drs Peter P. Wegener, Leslie Mack 
and H. W. Liepmann. 
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SYMBOLS 
speed of sound, cmlsec. Re pudlp, Reynolds number. 
specific heat at constant 

wire diameter, cm. 
wire current, amps. 
heat-transfer coefficient, 

cal cm-, sec-1 O C-l. 
thermal conductivity of air, 

cal cm-I sec-l O C-l. 
wire length, cm. 
u/a, Mach number. 
hd/k, Nusselt number, 
pressure, cm Hg. 
Pitot pressure, cm Hg. 
c,p/k, Prandtl number. 
heat loss from wire, cal/sec. 
wire resistance. ohms. 

pressure, cal gram-l O C-l. 
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temperature, O K. 
local stagnation temperature in 

boundary layer. 
temperature, O C. 
velocity, cm/sec. 
distance from flat plate leading 

edge, cm. 
distance from flat plate surface, 

cm. 
temperature coefficient of 

resistance, O C-l. 
ratio of specific heats. 
( y / x ) d ( R e m )  boundary layer 

parameter. 
absolute viscosity, poise. 
density, g/cm3. 
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T temperature loading, e equilibrium or unheated wire 
( T w -  TA/Te. condition. 

t stagnation condition. 
Subscro'pts w heated wire condition. 
0 at0" C. co undisturbed or free-stream 
2 conditions behind detached condition. 

normal shock wave. 

EXPERIMENTAL EQUIPMENT 

Wind tunnel 
All measurements were performed in the 20 in. supersonic wind tunnel 

of the Jet Propulsion Laboratory, California Institute of Technology. 
This tunnel is continuously operated with dry air by suitably staged 
centrifugal compressors, the supply pressure being variable over a range 
0.2 to 4.3 atmospheres and increasing with Mach number. The supply 
temperature for most experiments was between 30 and 40" C. The tunnel 
supply temperature is known to be uniform across the wind tunnel settling 
chamber within 1" C. Mach numbers in small increments between 
1.3 and 5-0 can be obtained in the test section with a servo-driven stainless 
steel flexible-plate nozzle. 

Hot wires 
The wire material used was an alloy of 9004 platinum and loo/, rhodium. 

The nominal wire diameters were 0-00127 cm (0.0005 in.) and 0.00038 cm 
(0.00015in.) as specified by the manufacturer. No attempt was made to 
determine wire diameters independently since use of the nominal values 
yielded consistent data in the final results. The length to diameter ratio, 
or aspect ratio, of the wires was approximately 400 for the larger diameter 
wires and 550 for the smaller ones. The wire holder shown in figure 1 
(plate 1) was made of two stainless steel wedge-shaped prongs insulated 
electrically from one another by a layer of glass cloth bonded to the metal 
with a Teflon bonding agent. The wires were attached to the prongs of 
the holder with soft solder. 

Heating circuit 
The direct current for heating the wires was supplied by a 24-voft 

storage battery through a circuit including a Wheatstone bridge for the 
measurement of the wire resistance. A Brown null indicator showed 
the bridge balance. A Rubicon portable precision potentiometer was used 
to measure the potential drop across a precision resistor of 1 ohm in series 
with the hot wire. 

Pitot probe 

was placed close to the hot wire. 
a mercury micromanometer to an accuracy of 

In  order to determine the local Mach number accurately, a Pitot probe 
The Pitot pressure was measured on 

0.1 mm mercury. 



John Laufer and Robert McClellan, 
Measurements of heat transfer from fine wires in supersonic flows, Plate I .  

Figure 1. Hot-wire probe. 

Figure 2. Traversing mechanism. 





Measurements of heat transfer from$ne wires in supersonic fiows 279 

Traversing mechanism 
The boundary layer survey presented was made on a smooth flat plate 

which spanned the working section of the tunnel. A traversing mechanism 
(figure 2, plate 1) fitted in the plate could be positioned to an accuracy of 
& 0.01 mm. 

EXPERIMENTAL PROCEDURE 

For the determination of the local flow conditions, the standard methods 
of recording the tunnel stagnation pressure, stagnation temperature, 
and the local Pitot pressure were used. The accuracy of the measured 
Mach numbers is believed to be within i%, and the values of the Reynolds 
numbers are accurate within 2%. 

In order to obtain the heat loss coefficient, or Nusselt number, a 
measurement of wire resistance and current is required, together with a 
knowledge of the heated and unheated wire temperatures. Since measure- 
ments of resistance and current can be carried out with great precision 
by well-known methods, only the accurate establishment of the wire 
temperatures necessitated special effort. This involved the measurement 
of the thermal coefficient of resistance a, carried out in the following manner. 
The resistance of several samples of the 0.00127cm and 0.00038cm 
diameter wires was measured at 0" C, at room temperature, and near the 
temperature of boiling water. The coefficient a, based on 0" C, was 
computed from R = R,( 1 + at) with R being the resistance of the wire at 
some temperature t o  C. It was considered that within the temperature 
range 0" C to 300" C covered in the present experiment, the use of a linear 
resistance-temperature relationship was acceptable. A typical calibration 
curve is shown in figure 3. It was found that for the large diameter wire 
a = 0-00175/" C k 4%, and for the smaller wires a = 0.00166/" C i- 14%. 
The percentages refer to the maximum variations of the thermal coefficient 
of resistance for various samples taken from the same spool of wire. The 
above values of a were used in reducing all the heat loss data except at Mach 
numbers 1.33 and 4.54. In these cases a wire from a different spool with 
a = 0-00169/" C was used. 

In principle, having the information on a and R, and a resistance measure- 
ment for a given flow condition, the wire temperature could be measured. 
Unfortunately, it was found that during several measurements the wire 
stretched permanently, presumably due to the wind tunnel starting loads, 
or even due to  continuous high air loads. The wire stretching increased 
the resistance by several percent. This fact was established by a resistance- 
temperature recalibration of a few wires after several hours of exposure to 
the air stream. This occasional stretching made it impossible to accurately 
infer the wire temperature from its measured resistance. It was therefore 
decided to make a number of careful separate measurements of the 
equilibrium (unheated) resistance of wires exposed to the free stream in 
the entire Mach number and Reynolds number range, and for this purpose 
some specially constructed wires were used. The length of these wires 
was somewhat smalIer than that used for the later heat loss measurements 
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in order to increase the probability of test survival. (Calculations indicated 
that in the case of unheated wires, the correction due to heat loss through 
the prongs of the holder was within the experimental scatter.) Furthermore, 
the resistance of all the wires used in this set of experiments was calibrated 
against temperature before and after the measurements. If the resistance 
had changed more than a few tenths of one percent due to exposure to the 
air stream, the results were discarded. With this technique it was possible 
to obtain wire equilibrium measurements repeatable within 1 %. 

Figure 3. Ternperature-resistance calibration. 

The procedure for the heat loss measurements may be described as 
follows. With the wire in the free stream, its ' cold ' resistance was measured, 
that is, the resistance of the wire when there is no heating current in it, 
as in measurements of the wire recovery temperature. Next the wire was 
heated by passing a current through it until its resistance reached some 
predetermined value, and this current was measured. The sequence was 
then repeated for a different predetermined value of resistance. 
Simultaneously with these measurements, the tunnel supply pressure and 
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temperature were recorded, and the Pitot pressure in the vicinity of the 
wire was measured. The entire procedure was repeated at several tunnel 
pressure levels at a given Mach number, so as to give as wide a variation of 
Reynolds number as possible. In turn the Mach number was also varied 
over the entire range of the tunnel. Figure 4 shows a typical set of these 
measurements at M ,  = 3.05. 

=;T.-T. 
TI 

Figure 4. Typical measurements at M ,  .= 3.05. 

DATA REDUCTION 

The measurement of the wire heat loss involved the recording of the 

(a) The $ow parameters: stagnation pressure p, ,  Pitot pressure p , ,  
and stagnation temperature Tt, From these the local Mach and Reynolds 
numbers were obtained. The flow conditions on which the Reynolds 
number was Lased will be discussed later. 
F.M. T 

following quantities. 
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( 6 )  The wire parameters: current i, unheated or equilibrium resistance 
Re, heated wire resistance R,. From the values of Re measured at 
various Mach and Reynolds numbers, the equilibrium wire temperatures 
could be computed using the relation 

where M and R, were obtained from the resistance-temperature calibrations. 
Thus the functional relationship 

=f(M,,Re,)  (2) 

could be established. 
Only wires that survived a complete run and showed no change in R, 

on recalibration were used in the determination of this function. Once 
established, this relationship permitted the computation of T ,  from the 
known values of T,, M ,  and Re, in subsequent measurements. 

The heat loss from the wire was expressed in the form of a Nusselt 
number 

hd 
k 

NU= -, 
where 

4 
d d (  T ,  - T,) h =  

is the heat transfer coefficient for a cylinder. In terms of electrical quantities, 
0.23 9i2R ,,,RE - - 4 NU = 

rZk(Tw-TE) ~Zk(Rw-R, ) [1+~(T , -273) ]  ' 
where 0.239 is a conversion factor from cal/sec to watts. The temperatures 
on which the values of the heat conductivity of air were based will be 
described later. 

Since R E  was directly measured and T ,  was obtained from the previously 
established experimental relation (2), any change in R, due to stretching 
of the wire during the supersonic measurement could be immediately 
detected, and the correct value of R, determined. This change was always 
less than 376 of the initial value of R,,. In this simple correction it was 
assumed that changes in resistance resulted from uniform changes in the 
length cnd diameter of the wire. 

Due to the fact that the hot wire is of finite length and the holder is at 
a lower temperature than the wire itself, there is heat conduction to the 
holder as well as heat loss to the air stream by forced convection. This 
means that the measured heat loss per unit length for a wire of finite Iength 
is different than it would be for a wire of infinite length in the same air 
stream with the same heating current. The correction for this end loss 
effect was given first by King (1914). The same method was used here 
adopting the technique of computation of Kovhznay (1950). The 
corrections were of the order of 5 %  of the measured Nusselt number. 
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RESULTS AND DISUUSSION 

The principal aim of the present investigation was, first, to find the 
important flow parameters that govern the heat loss from a heated wire 
in supersonic flow, and, second, to obtain an empirical relationship between 
these flow parameters and the measured heat loss. 

In  general it can be shown from dimensional arguments that the heat 
loss, usually expressed in terms of a nondimensional Nusselt number, 
depends on the following quantities (see Kovhsznay 1950) : 
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Nu, = Nu(Re,, M,, Pr,, y,  7, l /d) .  (3)  
All the parameters are referred to free-stream conditions, which are 

usually given in the problem. The Prandtl number and the ratio of the 
specific heats of the gas were very nearly constant in the present experiments. 
The aspect ratio Z/d enters into the problem mainly because of conduction 
losses through the wire supports. A suitable small correction described 
earlier was made to eliminate this effect. The above functional relationship 
simplifies, therefore, to 

Nu, = Nu(Re,, Ma,  7).  (4) 
The heat transfer measurements presented in this form exhibited a 

systematic variation with free-stream Mach number. The question 
arose whether, with a more judicious choice of parameters, further simpli- 
fication could be attained. 

In  this connection the experiments of Walter & Lange (1953) are of 
interest. They measured the local recovery temperature and the pressure 
distribution around an insulated cylinder in supersonic flow. Their 
measurements indicated that the flow conditions behind the detached shock 
wave and in the vicinity of the cylinder were very nearly independent of the 
free-stream Mach number in the range investigated (2.5 < M < 5.0). 
Although the Reynolds numbers of these experiments were much higher than 
those met here, the cylinder boundary layer was laminar, and their conclusions 
can be expected to hold also in the lower Reynolds number range. This 
immediately suggests that the parameters in (4) should be expressed in 
terms of the conditions beyond the detached normal shock wave, rather 
than the undisturbed flow conditions. Accordingly, (4) can be rewritten 

The ratios of heat conductivity and viscosity depend very nearly on the 
temperature ratio T,/T,, which in turn is a function of M ,  only. Therefore 
( 5 )  becomes Nu, = Nu(Re,, M,, i-). 

As the supersonic free-stream Mach number increases, M, approaches a 
constant. Thus, 

All the measurements were expressed in terms of these parameters and are 
discussed below. 

Nu, = Nu(Re,, T )  for M ,  3 1. (6 )  

T 2  
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Figure 5 shows the results of measurements of  the equilibrium 
temperature attained by the unheated wire at various Mach and Reynolds 
numbers. I t  is seen that for a Reynolds number Re,, larger than approxi- 
mately 20, the equilibrium temperature variation with Re, and M is 
negligible, being within the limits of the experimental accuracy ( rt: 1 yo). 
Unfortunately, the Reynolds number range is not very wide at the higher 
Mach numbers ; but the results of Walter & Lange (1953) strongly suggest 
that the equilibrium temperature has a constant value. Below a Reynolds 
number of 20, on the other hand, a sharp rise in the equilibrium temperature 
was observed, and values above the stagnation temperature were measured. 

The results of the heat loss measurements are shown in figure 6. The 
Nusselt number is plotted as a function of the Reynolds number with 
the temperature loading as a parameter. Both Nusselt and Reynolds 
numbers are expressed in terms of conditions behind the normal detached 
shock wave. The points on the figure were directly read from plots of the 
type shown in figure 4. It is seen that the measurements presented in this 
manner do not exhibit a dependence on the free-stream Mach number in 
accordance with equation (6), even for a Mach number as low as 1.3. 
Further, provided Re, > 20, the Nusselt number varies with the square 
root of the Reynolds number-a relationship well-known for low speed 
flows. Again, below a Reynolds number of about 20 (d(Re2)  N 4.5) 
the square root relationship breaks down, and the heat loss decreases at 
a slower rate with decreasing Reynolds number. 
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From these results it is apparent that the predominant parameter of the 
problem is the Reynolds number. They also substantiate the conjecture 
made earlier that the Reynolds number should not be based on the 
undistuibed free-stream conditions, and that the ‘ apparent free stream ’ 
of the cylinder was the flow behind the detached shock wave. For con- 
venience, and because in front of the body the shock wave. was in fact very 
nearly normal, the Reynolds number was based on conditions behind 
a normal shock wave. 
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Figure 6. Nusselt number variation at various temperature loadings. 

The measurements can evidently be discussed in terms of two Reynolds 
number ranges, a Reynolds number of approximately 20 being the dividing 
line. 

High Reynolds numberjlows: Re, > 20 
As pointed out earlier, in this range the heat loss coefficient varied with 

the square root of the Reynolds number for a given temperature loading. 
Such a relationship was found to exist in low-speed subsonic and transonic 
streams (King 1914; Lowell 1950; Stalder 1952), and is characteristic 
of flows where boundary layer approximations are applicable. The results 
suggest, therefore, that above Re N 20 the usual boundary layer approxi- 
mation could be used in the theoretical treatment of this problem. 

Spangenberg’s data (1955) for M ,  = 1.25 to Ma = 1.9 are found to 
.agree with the present results within the scatter of his experiments. 
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Kovhsznay and Tormarck (1950) were the first to point out the independence 
of the wire heat loss and the free-stream Mach number, but their values are 
too high by about 20 to 25%. 

Low Reynolds number JIows : Re, < 20 
In this range the measurements indicate that (a)  the equilibrium 

temperature of the wire increases rapidly with decreasing Reynolds number 
(figure 5), and exceeds the stagnation temperature, and (6)  the heat loss 
decreases at a slower rate with decreasing Reynolds number (figure 6). 
The former effect was first noticed by Stalder, Goodwin & Creager (1952). 
They explained it from the point of view of kinetic theory, and related the 
equilibrium temperature to the ratio of the mean free path h and cylinder 
diameter. It is interesting to note that the Reynolds number Re, is 
equivalent to d/X, the reciprocal of the parameter used by Stalder, Goodwin & 
Creager, provided the viscosity relation of kinetic theory is used and the 
assumption M a  > 1 is made. 

At this point one may inquire if, in the region where the mean free path 
and cylinder diameter are of the same order of magnitude, conditions can 
still be adequately described from the continuum mechanics point of view, 
and if it is in fact necessary to formulate the problem in terms of the kinetic 
theory. At present there is not enough evidence for a definite answer. 
However, from the fact that in the present experiments one Reynolds number 
alone-without additional parameters-correlates the measurements in 
this range as well as in the high Reynolds number range, one may expect 
continuum flow theories to be valid for the flow regime in question. 

CONCLUSION 
Measurements of the heat loss of fine cylinders in supersonic flows 

(1) The principal indeperident parameter of the problem is the Reynolds 
number based on conditions behind the detached normal shock wave. 
(2) For Re2 > 20, the cylinder equilibrium temperature is independent 
of both Reynolds number and free-stream Mach number and has a value 
TJT, = 0.95 2 0.01 ; the Nusselt number Nu, varies with the square 
root of the Reynolds number for a given temperature loading and is 
independent of the free-stream Mach number. 
(3) For Re, < 20, the equilibrium temperature rises sharply with 
decreasing Reynolds number ; in fact it exceeds the stagnation tempera- 
ture at about Re, < 5. The square root relationship between Nusselt 
and Reynolds numbers does not hold ; in this region also, the free-stream 
Mach number is not a parameter of the problem. 

within a Mach number range 1.3 to 4-5 indicate the following results : 

APPENDIX 
MEAN FLOW MEASUREMENTS IN A SUPERSONIC LAMINAR BOUNDARY LAYER 

The results described in this paper suggest the use of a hot wire for 
measurements of some mean Aow quantities in an unknown supersonic 

BY MEANS OF A HOT WIRE 
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flow field. As an example, hot-wire measurements were made in a laminar 
boundary layer on a flat plate 24cm from the leading edge at a stagnation 
pressure of 24.0 cm Hg and a stagnation temperature of 285" K. The free- 
stream Mach number was 3.05. The measurements consisted of recording 
the unheated wire resistance and wire heat loss for a constant temperature 
loading at different distances from the flat surface. It is shown that by 
these two types of measurements and by the use of the results of this paper 
in a modified form, the mass flow pu and local stagnation temperature T,' can 
be obtained. Furthermore, the assumption of constant static pressure across 
the boundary layer allows the calculation of all the other flow parameters. 

The results were expressed in a more convenient form the following way. 
It was shown that, for a given temperature loading, 

Nu, = Nu(Re,). 

The fluid properties, heat conductivity and absolute viscosity are based 
on conditions behind the normal detached shock wave which are not known 
apr ior i .  The above relationship can be written 

Since both the heat conductivity and viscosity are functions of the 
temperature only, the ratios k , /k ,  and pw/pe depend very closely on TWIT,, 
which is a constant for a given temperature loading. Moreover, it is found 
that the ratio T J T ,  is very nearly unity within the Mach and Reynolds 
number range of the experiments. The law of heat loss from the hot wire 
can therefore be written in the form 

Nu, = Nu(Re,,T). 

Figure 7 shows the measurements evaluated in this form. The points 
on this figure were obtained by cross-plotting from curves of NU, versus 
T for constant values of Re,, similar to plots shown in figure 4. It might 
be mentioned that the heat loss law in a form 

Nu, = Nu(Re,, T )  

could also have been used. 

number was put in the form 
Furthermore, the variation of equilibrium temperature with Reynolds 

Te = f(Re,). r 
The method of data reduction may be described as follows. 

(1) From the measurement of Re the equilibrium temperature is calculated 
by means of the relation 

T,= R e -  - Ro + 271" C. 
4 3  

(2) From the heat loss measurements Nu, is computed; and, using 
figure 7, the mass flow pu can be obtained, since wire diameter and the 
viscosity based on wire temperature are known. 
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Figure 7. Nusselt number variation at various temperature loadings. 
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Figure 8. Distributions of mean flow parameters in a laminar boundary layer 
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(3) From the relation TC 
- = f(W 
Tt 

the local total temperature is found. 
(4) Finally, by assuming constant static pressure across the boundary 
layer, the usual determination of Mach number, mean velocity and 
density can be made. 

The solid lines are theoretical values 
obtained by using the method of Klunker & McLean (1953).* From 
the Mach number distribution it is seen that the measured points below 
a Mach number 1.3 deviate significantly 'from the theoretical values. Since 
the heat loss variation shown in figure 7 is not expected to hold in this range, 
the discrepancy is not surprising. Therefore, results obtained near the 
wall where M < 1.3 are not plotted in the other distributions shown on 
this figure. The figure' indicates a very good agreement between theory 
and experiment in the region considered ( M  > 1.3). It is believed that 
the useful range of the hot-wire method employed here could be extended 
to lower Mach numbers using the results of Spangenberg (1955) and by 
devising a more elaborate technique. 

Figure 8 shows the final results. 
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